Least Squares Adjustment with Rank-Deficient Weight Matrix

y=A48i+d+é &~(0,) where X =02P*and Pd=0 Al

2. LSA Target Function ¢ (8%, d)

- N > T .« -
¢(6%,d) =é"Pé=(y—A6x—d) P(y—Ab6X—d)=min|g; A2
Since P'd = 0:
(6%, d) = ¢p(6%) = TP’ = (3 — ASH)TP (§ — ASZ) = min|sz A3

Expanding Equation A.3 we get:

$(8%) = (J — ASD)"P (§ — A 5%)

A4
=yTPy—yTPASX —6XTATP y + 6XTATP A §X = min|sz
Equation A.3 can be simplified to:
P(6%) =y Py + 6xTATP A 6% — 26XTATP y = min|s; A5

3. Solution Vector (& ﬁ)

The solution vector (8x3) that minimizes ¢ (8X) can be obtained by differentiating ¢ (6x)

w.r.t. 6X and equating it to zero:

oo . .
= X — y = A6
5% 2A'PASx—2A"Py =0
5% = (ATPA) ATP'§ = N"1ATP'J where N = ATP'A AT
4. Variance-covariance matrix of the solution vector (2{6 ):c’})

Using the law of error propagation, the variance-covariance matrix of the solution

vector (2{6 ﬁ}) can be obtained as follows:
S{6X)=06ZN"1ATP' P*+P AN™1 A8

Since for a Moore-Penrose pseudo-inverse, P P *P = P (Koch, 1988):
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2{6%} = 62N"'NN~' = 2N A9
5. A-posteriori variance factor (62)

The a-posteriori variance factor (62) is obtained by deriving the expected value of the sum

of squares of the weighted predicted residuals:

E(éTP'é) = E{(J — Abx — d)TP (j — Ab% — d)} A.10

Since P'd = 0, Equation A.10 gets the form:
o o — T /. —

E(éTP'é) = E{(7 - 46%) P'(y — A5%)} A1l
Expanding Equation A.11 while using the derived solution for 8% in Equation A.7 we get
(while considering that (In — AN _1ATP\) is an idempotent matrix):

E(éTP'é) =E{3TPy —yTP ANTIATP j} A12

Given that the trace of a scalar equals to the scalar, i.e., tr(S) = S and that the trace operation
is commutative, i.e., tr(AB) = tr(BA) (Koch, 1988), Equation A.12 can be manipulated as

follows:
E(é"Pé) = E{tr(Py3T) — tr(P AN~1ATP 377)} A13

Based on the properties that tr(A) + tr(B) = tr(A+B) and that E{tr(A)} = trE(A) (Koch,
1988), Equation A.13 can be rewritten as follows:
E(é"Pé) = trP [E(GYT) — ANTATP E(3YT)] 14
= trP (I, — AN"*ATP)E(Hy7)
where:

I, is an nxn identity matrix.

The term E(¥y7) can be derived from the variance-covariance matrix of the observations

vector (X{y}) as follows:
S} =o2Pt =E{(7 - 6% -d)(y - 467 ~d) ) A5
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Expanding Equation A.15, we get:

EGT) = 02P™* + (A 8% + d)(A 6% +d)

A.16
= g2P* + ASXSXTAT + AS%dT + d6xTAT + ddT
Substituting Equation A.16 in Equation A.14 yields:
E(éTPé) = trP' (I — AN“'ATP)[02P™* + ASZ5XTAT + ASZdT + dSXT AT
A.17

+dd"]
Given that P'd = 0 and (I — AN~1ATP)A = 0, Equation A.17 can be simplified to:
E(é"P'é) = o2trP (1 — ANT*ATP)P*=g2trP' P* — g2trN"'ATPP*P'A A1
Based on the property that tr(AB) = rank(AB) (given that AB is idempotent) and
rank(AB) < min(rankA, rankB) (Koch, 1988), the following can be stated:

tr(P P*) = rank(P P*) = min(rankP ,rankP*) = rankP = q A.19

Given that tr(P P ) = q (as shown in Equation A.19) and that P P *P = P, Equation
A.18 can be simplified to:

E(é’TPxé’) =02q — o2trN"*N=c2q — oltrl,,, = 62q — c’m A.20
where,
m is the number of unknwon parameters.

Finally, we can get the expression for the estimated a-posteriori variance factor (62)

from Equation A.20 as follows:

STp =
~ e 'Pe
0= —— A2l

o (rankpP -m)



