Least Squares Adjustment with Rank-Deficient Weight Matrix

1. Model

$$
\begin{equation*}
\vec{y}=A \delta \vec{x}+\vec{d}+\vec{e} \quad \vec{e} \sim\left(0, \Sigma^{\prime}\right) \quad \text { where } \Sigma^{\prime}=\sigma_{o}^{2} P^{\prime+} \text { and } P^{`} \vec{d}=0 \tag{A. 1}
\end{equation*}
$$

2. LSA Target Function $\phi(\delta \vec{x}, \vec{d})$

$$
\begin{equation*}
\phi(\delta \vec{x}, \vec{d})=\vec{e}^{T} P^{`} \vec{e}=(\vec{y}-A \delta \vec{x}-\vec{d})^{T} P^{`}(\vec{y}-A \delta \vec{x}-\vec{d})=\left.\min \right|_{\delta \vec{x}, \vec{a}} \tag{A. 2}
\end{equation*}
$$

Since $P^{`} \vec{d}=0$:

$$
\begin{equation*}
\phi(\delta \vec{x}, \vec{d})=\phi(\delta \vec{x})=\vec{e}^{T} P^{\prime} \vec{e}=(\vec{y}-A \delta \vec{x})^{T} P^{\prime}(\vec{y}-A \delta \vec{x})=\left.\min \right|_{\delta \vec{x}} \tag{A. 3}
\end{equation*}
$$

Expanding Equation A. 3 we get:

$$
\begin{align*}
& \phi(\delta \vec{x})=(\vec{y}-A \delta \vec{x})^{T} P^{`}(\vec{y}-A \delta \vec{x}) \\
&=\vec{y}^{T} P^{`} \vec{y}-\vec{y}^{T} P^{`} A \delta \vec{x}-\delta \vec{x}^{T} A^{T} P^{`} \vec{y}+\delta \vec{x}^{T} A^{T} P^{`} A \delta \vec{x}=\left.\min \right|_{\delta \vec{x}} \tag{A. 4}
\end{align*}
$$

Equation A. 3 can be simplified to:

$$
\begin{equation*}
\phi(\delta \vec{x})=\vec{y}^{T} P^{\prime} \vec{y}+\delta \vec{x}^{T} A^{T} P^{`} A \delta \vec{x}-2 \delta \vec{x}^{T} A^{T} P^{`} \vec{y}=\left.\min \right|_{\delta \vec{x}} \tag{A. 5}
\end{equation*}
$$

3. Solution Vector $(\delta \hat{\vec{x}})$

The solution vector ($\delta \hat{\vec{x}}$) that minimizes $\phi(\delta \vec{x})$ can be obtained by differentiating $\phi(\delta \vec{x})$ w.r.t. $\delta \vec{x}$ and equating it to zero:

$$
\begin{align*}
& \frac{\partial \phi}{\partial \delta \vec{x}}=2 A^{T} P^{`} A \delta \vec{x}-2 A^{T} P^{`} \vec{y}=0 \tag{A. 6}\\
& \delta \hat{\vec{x}}=\left(A^{T} P^{`} A\right)^{-1} A^{T} P^{`} \vec{y}=N^{-1} A^{T} P^{`} \vec{y} \quad \text { where } N=A^{T} P^{`} A \tag{A. 7}
\end{align*}
$$

4. Variance-covariance matrix of the solution vector $(\Sigma\{\delta \hat{\vec{x}}\})$

Using the law of error propagation, the variance-covariance matrix of the solution vector $(\Sigma\{\delta \hat{\vec{x}}\})$ can be obtained as follows:

$$
\Sigma\{\delta \hat{\vec{x}}\}=\sigma_{o}^{2} N^{-1} A^{T} P^{`} P^{`}+P^{`} A N^{-1}
$$

Since for a Moore-Penrose pseudo-inverse, $P^{`} P^{`}+P^{`}=P^{`}$ (Koch, 1988):

$$
\begin{equation*}
\Sigma\{\delta \hat{\vec{x}}\}=\sigma_{o}^{2} N^{-1} N N^{-1}=\sigma_{o}^{2} N^{-1} \tag{A. 9}
\end{equation*}
$$

5. A-posteriori variance factor $\left(\hat{\sigma}_{o}^{2}\right)$

The a-posteriori variance factor $\left(\hat{\sigma}_{o}^{2}\right)$ is obtained by deriving the expected value of the sum of squares of the weighted predicted residuals:

$$
\begin{equation*}
E\left(\tilde{\vec{e}}^{T} P^{\prime} \tilde{\vec{e}}\right)=E\left\{(\vec{y}-A \widehat{\delta \vec{x}}-\vec{d})^{T} P^{`}(\vec{y}-A \widehat{\delta \vec{x}}-\vec{d})\right\} \tag{A. 10}
\end{equation*}
$$

Since $P^{`} \vec{d}=0$, Equation A. 10 gets the form:

$$
\begin{equation*}
E\left(\tilde{\vec{e}}^{T} P^{\prime} \tilde{\vec{e}}\right)=E\left\{(\vec{y}-A \widehat{\delta \vec{x}})^{T} P^{\prime}(\vec{y}-A \widehat{\delta \vec{x}})\right\} \tag{A. 11}
\end{equation*}
$$

Expanding Equation A. 11 while using the derived solution for $\widehat{\delta \vec{x}}$ in Equation A. 7 we get (while considering that $\left(I_{n}-A N^{-1} A^{T} P^{`}\right)$ is an idempotent matrix):

$$
\begin{equation*}
E\left(\tilde{\vec{e}}^{T} P^{`} \tilde{\vec{e}}\right)=E\left\{\vec{y}^{T} P^{`} \vec{y}-\vec{y}^{T} P^{`} A N^{-1} A^{T} P^{`} \vec{y}\right\} \tag{A. 12}
\end{equation*}
$$

Given that the trace of a scalar equals to the scalar, i.e., $\operatorname{tr}(S)=S$ and that the trace operation is commutative, i.e., $\operatorname{tr}(A B)=\operatorname{tr}(B A)($ Koch, 1988), Equation A. 12 can be manipulated as follows:

$$
\begin{equation*}
E\left(\tilde{\vec{e}}^{T} P \check{\vec{e}}\right)=E\left\{\operatorname{tr}\left(P^{`} \vec{y} \vec{y}^{T}\right)-\operatorname{tr}\left(P^{`} A N^{-1} A^{T} P^{`} \vec{y} \vec{y}^{T}\right)\right\} \tag{A. 13}
\end{equation*}
$$

Based on the properties that $\operatorname{tr}(A)+\operatorname{tr}(B)=\operatorname{tr}(A+B)$ and that $E\{\operatorname{tr}(A)\}=\operatorname{tr} E(A)($ Koch, 1988), Equation A .13 can be rewritten as follows:

$$
\begin{align*}
E\left(\tilde{\vec{e}}^{T} P^{`} \tilde{\vec{e}}\right)= & \operatorname{tr} P^{`}\left[E\left(\vec{y} \vec{y}^{T}\right)-A N^{-1} A^{T} P^{`} E\left(\vec{y} \vec{y}^{T}\right)\right] \tag{A. 14}\\
& =\operatorname{tr} P^{`}\left(I_{n}-A N^{-1} A^{T} P^{`}\right) E\left(\vec{y} \vec{y}^{T}\right)
\end{align*}
$$

where:
I_{n} is an $n x n$ identity matrix.
The term $E\left(\vec{y} \vec{y}^{T}\right)$ can be derived from the variance-covariance matrix of the observations vector $(\Sigma\{\vec{y}\})$ as follows:

$$
\begin{equation*}
\Sigma\{\vec{y}\}=\sigma_{o}^{2} P^{`+}=E\left\{(\vec{y}-A \delta \vec{x}-\vec{d})(\vec{y}-A \delta \vec{x}-\vec{d})^{T}\right\} \tag{A. 15}
\end{equation*}
$$

Expanding Equation A.15, we get:

$$
\begin{align*}
E\left(\vec{y} \vec{y}^{T}\right)=\sigma_{o}^{2} P^{\prime+} & +(A \delta \vec{x}+\vec{d})(A \delta \vec{x}+\vec{d})^{T} \tag{A. 16}\\
& =\sigma_{o}^{2} P^{\top+}+A \delta \vec{x} \delta \vec{x}^{T} A^{T}+A \delta \vec{x} \vec{d}^{T}+\vec{d} \delta \vec{x}^{T} A^{T}+\vec{d} \vec{d}^{T}
\end{align*}
$$

Substituting Equation A. 16 in Equation A. 14 yields:

$$
\begin{align*}
E\left(\tilde{\vec{e}}^{T} P^{`} \tilde{\vec{e}}\right)= & \operatorname{tr} P^{`}\left(I-A N^{-1} A^{T} P^{`}\right)\left[\sigma_{o}^{2} P^{`}+A \delta \vec{x} \delta \vec{x}^{T} A^{T}+A \delta \vec{x} \vec{d}^{T}+\vec{d} \delta \vec{x}^{T} A^{T}\right. \tag{A. 17}\\
& \left.+\vec{d} \vec{d}^{T}\right]
\end{align*}
$$

Given that $\mathrm{P}^{`} \vec{d}=0$ and $\left(I-A N^{-1} A^{T} P^{`}\right) A=0$, Equation A. 17 can be simplified to:

$$
\begin{equation*}
E\left(\tilde{\vec{e}}^{T} P^{`} \tilde{\vec{e}}\right)=\sigma_{o}^{2} \operatorname{tr} P^{`}\left(I-A N^{-1} A^{T} P^{`}\right) P^{`+}=\sigma_{o}^{2} \operatorname{tr} P^{`} P^{`+}-\sigma_{o}^{2} \operatorname{tr} N^{-1} A^{T} P^{`} P^{`}+P^{`} A \tag{A. 18}
\end{equation*}
$$

Based on the property that $\operatorname{tr}(A B)=\operatorname{rank}(A B)$ (given that $A B$ is idempotent) and $\operatorname{rank}(A B) \leq \min (\operatorname{rank} A, \operatorname{rank} B)($ Koch, 1988 $)$, the following can be stated:

$$
\begin{equation*}
\operatorname{tr}\left(P^{`} P^{`+}\right)=\operatorname{rank}\left(P^{`} P^{`+}\right)=\min \left(\operatorname{rank} P^{`}, \operatorname{rank} P^{`+}\right)=\operatorname{rank} P^{`}=q \tag{A. 19}
\end{equation*}
$$

Given that $\operatorname{tr}\left(P^{`} P^{`}+\right)=q$ (as shown in Equation A.19) and that $P^{`} P^{`}+P^{`}=P^{`}$, Equation A. 18 can be simplified to:

$$
\begin{equation*}
E\left(\tilde{\vec{e}}^{T} P^{\prime} \tilde{\vec{e}}\right)=\sigma_{o}^{2} q-\sigma_{o}^{2} \operatorname{tr} N^{-1} N=\sigma_{o}^{2} q-\sigma_{o}^{2} \operatorname{tr} I_{m}=\sigma_{o}^{2} q-\sigma_{o}^{2} m \tag{A. 20}
\end{equation*}
$$

where,
m is the number of unknwon parameters.
Finally, we can get the expression for the estimated a-posteriori variance factor $\left(\hat{\sigma}_{o}^{2}\right)$ from Equation A. 20 as follows:
$\widehat{\sigma}_{\mathrm{o}}^{2}=\frac{\tilde{\tilde{\mathrm{e}}}^{\mathrm{T}} \mathrm{P}^{\prime \tilde{\tilde{\mathrm{e}}}}}{\left(\operatorname{rank} P^{\prime}-\mathrm{m}\right)}$

